Freddy Gabbay, Mendelson, Avi , Salameh, Basel , and Ganaiem, Majd . 2021.
“Asymmetric Aging Avoidance Eda Tool”. In 2021 34Th Sbc/Sbmicro/Ieee/Acm Symposium On Integrated Circuits And Systems Design (Sbcci), Pp. 1-6. doi:10.1109/SBCCI53441.2021.9529984.
Convolutional Neural Networks (CNNs) are broadly used in numerous applications such as computer vision and image classification. Although CNN models deliver state-of-the-art accuracy, they require heavy computational resources that are not always affordable or available on every platform. Limited performance, system cost, and energy consumption, such as in edge devices, argue for the optimization of computations in neural networks. Toward this end, we propose herein the value-locality-based compression (VELCRO) algorithm for neural networks. VELCRO is a method to compress general-purpose neural networks that are deployed for a small subset of focused specialized tasks. Although this study focuses on CNNs, VELCRO can be used to compress any deep neural network. VELCRO relies on the property of value locality, which suggests that activation functions exhibit values in proximity through the inference process when the network is used for specialized tasks. VELCRO consists of two stages: a preprocessing stage that identifies output elements of the activation function with a high degree of value locality, and a compression stage that replaces these elements with their corresponding average arithmetic values. As a result, VELCRO not only saves the computation of the replaced activations but also avoids processing their corresponding output feature map elements. Unlike common neural network compression algorithms, which require computationally intensive training processes, VELCRO introduces significantly fewer computational requirements. An analysis of our experiments indicates that, when CNNs are used for specialized tasks, they introduce a high degree of value locality relative to the general-purpose case. In addition, the experimental results show that without any training process, VELCRO produces a compression-saving ratio in the range 13.5–30.0% with no degradation in accuracy. Finally, the experimental results indicate that, when VELCRO is used with a relatively low compression target, it significantly improves the accuracy by 2–20% for specialized CNN tasks.
Alex Karbachevsky, Baskin, Chaim , Zheltonozhskii, Evgenii , Yermolin, Yevgeny , Gabbay, Freddy , Bronstein, Alex M, and Mendelson, Avi . 2021.
“Early-Stage Neural Network Hardware Performance Analysis”. Sustainability, 13, Pp. 717. doi:10.3390/su13020717.
Publisher's Version Abstract The demand for running NNs in embedded environments has increased significantly in recent years due to the significant success of convolutional neural network (CNN) approaches in various tasks, including image recognition and generation. The task of achieving high accuracy on resource-restricted devices, however, is still considered to be challenging, which is mainly due to the vast number of design parameters that need to be balanced. While the quantization of CNN parameters leads to a reduction of power and area, it can also generate unexpected changes in the balance between communication and computation. This change is hard to evaluate, and the lack of balance may lead to lower utilization of either memory bandwidth or computational resources, thereby reducing performance. This paper introduces a hardware performance analysis framework for identifying bottlenecks in the early stages of CNN hardware design. We demonstrate how the proposed method can help in evaluating different architecture alternatives of resource-restricted CNN accelerators (e.g., part of real-time embedded systems) early in design stages and, thus, prevent making design mistakes.
The fast and seemingly uncontrollable spread of the novel coronavirus disease (COVID-19) poses great challenges to an already overloaded health system worldwide. It thus exemplifies an urgent need for fast and effective triage. Such triage can help in the implementation of the necessary measures to prevent patient deterioration and conserve strained hospital resources. We examine two types of machine learning models, a multilayer perceptron artificial neural networks and decision trees, to predict the severity level of illness for patients diagnosed with COVID-19, based on their medical history and laboratory test results. In addition, we combine the machine learning models with a LIME-based explainable model to provide explainability of the model prediction. Our experimental results indicate that the model can achieve up to 80% prediction accuracy for the dataset we used. Finally, we integrate the explainable machine learning models into a mobile application to enable the usage of the proposed models by medical staff worldwide.